Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Res Sq ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38645156

ABSTRACT

Background: Since 2015, malaria vector control on Bioko Island has relied heavily upon long-lasting insecticidal nets (LLIN) to complement other interventions. Despite significant resources utilised, however, achieving and maintaining high coverage has been elusive. Here, core LLIN indicators were used to assess and redefine distribution strategies. Methods: LLIN indicators were estimated for Bioko Island between 2015 and 2022 using a 1×1 km grid of areas. The way these indicators interacted was used to critically assess coverage targets. Particular attention was paid to spatial heterogeneity and to differences between urban Malabo, the capital, and the rural periphery. Results: LLIN coverage according to all indicators varied substantially across areas, decreased significantly soon after mass distribution campaigns (MDC) and, with few exceptions, remained consistently below the recommended target. Use was strongly correlated with population access, particularly in Malabo. After a change in strategy in Malabo from MDC to fixed distribution points, use-to-access showed significant improvement, indicating those who obtained their nets from these sources were more likely to keep them and use them. Moreover, their use rates were significantly higher than those of whom sourced their nets elsewhere. Conclusions: Striking a better balance between LLIN distribution efficiency and coverage represents a major challenge as LLIN retention and use rates remain low despite high access resulting from MDC. The cost benefit of fixed distribution points in Malabo was deemed significant, providing a viable alternative for guaranteeing access to LLINs to those who use them.

2.
PLOS Glob Public Health ; 3(9): e0001516, 2023.
Article in English | MEDLINE | ID: mdl-37756280

ABSTRACT

Malaria surveillance is hampered by the widespread use of diagnostic tests with low sensitivity. Adequate molecular malaria diagnostics are often only available in centralized laboratories. PlasmoPod is a novel cartridge-based nucleic acid amplification test for rapid, sensitive, and quantitative detection of malaria parasites. PlasmoPod is based on reverse-transcription quantitative polymerase chain reaction (RT-qPCR) of the highly abundant Plasmodium spp. 18S ribosomal RNA/DNA biomarker and is run on a portable qPCR instrument which allows diagnosis in less than 30 minutes. Our analytical performance evaluation indicates that a limit-of-detection as low as 0.02 parasites/µL can be achieved and no cross-reactivity with other pathogens common in malaria endemic regions was observed. In a cohort of 102 asymptomatic individuals from Bioko Island with low malaria parasite densities, PlasmoPod accurately detected 83 cases, resulting in an overall detection rate of 81.4%. Notably, there was a strong correlation between the Cq values obtained from the reference RT-qPCR assay and those obtained from PlasmoPod. In an independent cohort, using dried blood spots from malaria symptomatic children living in the Central African Republic, we demonstrated that PlasmoPod outperforms malaria rapid diagnostic tests based on the PfHRP2 and panLDH antigens as well as thick blood smear microscopy. Our data suggest that this 30-minute sample-to-result RT-qPCR procedure is likely to achieve a diagnostic performance comparable to a standard laboratory-based RT-qPCR setup. We believe that the PlasmoPod rapid NAAT could enable widespread accessibility of high-quality and cost-effective molecular malaria surveillance data through decentralization of testing and surveillance activities, especially in elimination settings.

3.
Malar J ; 22(1): 72, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36859263

ABSTRACT

BACKGROUND: Since 2004, malaria transmission on Bioko Island has declined significantly as a result of the scaling-up of control interventions. The aim of eliminating malaria from the Island remains elusive, however, underscoring the need to adapt control to the local context. Understanding the factors driving the risk of malaria infection is critical to inform optimal suits of interventions in this adaptive approach. METHODS: This study used individual and household-level data from the 2015 and 2018 annual malaria indicator surveys on Bioko Island, as well as remotely-sensed environmental data in multilevel logistic regression models to quantify the odds of malaria infection. The analyses were stratified by urban and rural settings and by survey year. RESULTS: Malaria prevalence was higher in 10-14-year-old children and similar between female and male individuals. After adjusting for demographic factors and other covariates, many of the variables investigated showed no significant association with malaria infection. The factor most strongly associated was history of travel to mainland Equatorial Guinea (mEG), which increased the odds significantly both in urban and rural settings (people who travelled had 4 times the odds of infection). Sleeping under a long-lasting insecticidal net decreased significantly the odds of malaria across urban and rural settings and survey years (net users had around 30% less odds of infection), highlighting their contribution to malaria control on the Island. Improved housing conditions indicated some protection, though this was not consistent across settings and survey year. CONCLUSIONS: Malaria risk on Bioko Island is heterogeneous and determined by a combination of factors interacting with local mosquito ecology. These interactions grant further investigation in order to better adapt control according to need. The single most important risk factor identified was travel to mEG, in line with previous investigations, and represents a great challenge for the success of malaria control on the Island.


Subject(s)
Culicidae , Malaria , Child , Animals , Humans , Female , Male , Adolescent , Risk Factors , Ecology , Equatorial Guinea
4.
Trop Med Infect Dis ; 8(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36977150

ABSTRACT

INTRODUCTION: Malaria and soil-transmitted helminth (STH) co-infection is an important parasitic infection affecting populations in co-endemic countries including Equatorial Guinea. To date, the health impact of STH and malaria co-infection is inconclusive. The current study aimed to report the malaria and STH infection epidemiology in the continental region of Equatorial Guinea. METHODS: We performed a cross-sectional study between October 2020 and January 2021 in the Bata district of Equatorial Guinea. Participants aged 1-9 years, 10-17 years and above 18 were recruited. Fresh venous blood was collected for malaria testing via mRDTs and light microscopy. Stool specimens were collected, and the Kato-Katz technique was used to detect the presence of Ascaris lumbricoides, Trichuris trichiura, hookworm spp. and intestinal Schistosoma eggs. RESULTS: A total of 402 participants were included in this study. An amount of 44.3% of them lived in urban areas, and only 51.9% of them reported having bed nets. Malaria infections were detected in 34.8% of the participants, while 50% of malaria infections were reported in children aged 10-17 years. Females had a lower prevalence of malaria (28.8%) compared with males (41.7%). Children of 1-9 years carried more gametocytes compared with other age groups. An amount of 49.3% of the participants infected with T. trichiura had malaria parasites compared with those infected with A. lumbricoides (39.6%) or both (46.8%). CONCLUSIONS: The overlapping problem of STH and malaria is neglected in Bata. The current study forces the government and other stakeholders involved in the fight against malaria and STH to consider a combined control program strategy for both parasitic infections in Equatorial Guinea.

5.
Am J Trop Med Hyg ; 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35130487

ABSTRACT

Plasmodium falciparum sporozoites (PfSPZ) Vaccine is composed of radiation-attenuated, aseptic, purified cryopreserved PfSPZ. Multiple clinical trials empirically assessing two to six doses have shown multi-dose priming (-two to four doses the first week) to be optimal for protection in both 4- and 16-week regimens. In this randomized, double-blind, normal saline (NS), placebo-controlled trial, four groups (G) of 18- to 32-year-old Equatoguineans received multi-dose priming regimens with or without a delayed final dose at 4 or 16 weeks (9 × 105 PfSPZ/dose). The regimens were G1: days 1, 3, 5, 7, and 113; G2: days 1, 3, 5, and 7; G3: days 1, 3, 5, 7, and 29; and G4: days 1, 8, and 29). All doses were 9 × 105 PfSPZ. Tolerability, safety, immunogenicity, and vaccine efficacy (VE) against homologous-controlled human malaria infection (CHMI) 6-7 weeks after vaccination were assessed to down-select the best regimen. All four regimens were safe and well tolerated, with no significant differences in adverse events (AEs) between vaccinees (N = 84) and NS controls (N = 20) or between regimens. Out of 19 controls, 13 developed Pf parasitemia by quantitative polymerase chain reaction (qPCR) after CHMI. Only the vaccine regimen administered on study days 1, 8, and 29 gave significant protection (7/21 vaccinees versus 13/19 controls infected, VE 51.3%, P = 0.03, Barnard's test, two-tailed). There were no significant differences in antibodies against Pf circumporozoite protein (PfCSP), a major SPZ antigen, between protected and nonprotected vaccinees or controls pre-CHMI. The six controls not developing Pf parasitemia had significantly higher antibodies to blood stage antigens Pf exported protein 1 (PfEXP1) and Pf merozoite surface protein 1 (PfMSP1) than the controls who developed parasitemia, suggesting naturally acquired immunity against Pf-limited infections in controls. This study identified a safe, protective, 4-week, multi-dose prime vaccination regimen for assessment in future trials of PfSPZ Vaccine.

6.
PLoS Negl Trop Dis ; 16(1): e0009798, 2022 01.
Article in English | MEDLINE | ID: mdl-35100277

ABSTRACT

BACKGROUND: Regular and comprehensive epidemiological surveys of the filarial nematodes Mansonella perstans and Loa loa in children, adolescents and adults living across Bioko Island, Equatorial Guinea are lacking. We aimed to demonstrate that blood retained on malaria rapid diagnostic tests, commonly deployed for malaria surveys, could be used as a source of nucleic acids for molecular based detection of M. perstans and L. loa. We wanted to determine the positivity rate and distribution of filarial nematodes across different age groups and geographical areas as well as to understand level of co-infections with malaria in an asymptomatic population. METHODOLOGY: M. perstans, L. loa and Plasmodium spp. parasites were monitored by qPCR in a cross-sectional study using DNA extracted from a subset malaria rapid diagnostic tests (mRDTs) collected during the annual malaria indicator survey conducted on Bioko Island in 2018. PRINCIPAL FINDINGS: We identified DNA specific for the two filarial nematodes investigated among 8.2% (263) of the 3214 RDTs screened. Positivity rates of M. perstans and L. loa were 6.6% and 1.5%, respectively. M. perstans infection were more prominent in male (10.5%) compared to female (3.9%) survey participants. M. perstans parasite density and positivity rate was higher among older people and the population living in rural areas. The socio-economic status of participants strongly influenced the infection rate with people belonging to the lowest socio-economic quintile more than 3 and 5 times more likely to be L. loa and M. perstans infected, respectively. No increased risk of being co-infected with Plasmodium spp. parasites was observed among the different age groups. CONCLUSIONS/SIGNIFICANCE: We found otherwise asymptomatic individuals were infected with M. perstans and L. loa. Our study demonstrates that employing mRDTs probed with blood for malaria testing represents a promising, future tool to preserve and ship NAs at room temperature to laboratories for molecular, high-throughput diagnosis and genotyping of blood-dwelling nematode filarial infections. Using this approach, asymptomatic populations can be reached and surveyed for infectious diseases beyond malaria.


Subject(s)
Coinfection/epidemiology , Loa/isolation & purification , Malaria/epidemiology , Mansonella/isolation & purification , Adolescent , Adult , Animals , Child , Coinfection/parasitology , Cross-Sectional Studies , DNA, Helminth , Equatorial Guinea/epidemiology , Female , Humans , Loiasis/blood , Loiasis/epidemiology , Malaria/blood , Male , Mansonelliasis/blood , Mansonelliasis/epidemiology , Middle Aged , Plasmodium/isolation & purification , Prevalence , Socioeconomic Factors
7.
Malar J ; 21(1): 23, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35073934

ABSTRACT

BACKGROUND: Surveillance programmes often use malaria rapid diagnostic tests (RDTs) to determine the proportion of the population carrying parasites in their peripheral blood to assess the malaria transmission intensity. Despite an increasing number of reports on false-negative and false-positive RDT results, there is a lack of systematic quality control activities for RDTs deployed in malaria surveillance programmes. METHODS: The diagnostic performance of field-deployed RDTs used for malaria surveys was assessed by retrospective molecular analysis of the blood retained on the tests. RESULTS: Of the 2865 RDTs that were collected in 2018 on Bioko Island and analysed in this study, 4.7% had a false-negative result. These false-negative RDTs were associated with low parasite density infections. In 16.6% of analysed samples, masked pfhrp2 and pfhrp3 gene deletions were identified, in which at least one Plasmodium falciparum strain carried a gene deletion. Among all positive RDTs analysed, 28.4% were tested negative by qPCR and therefore considered to be false-positive. Analysing the questionnaire data collected from the participants, this high proportion of false-positive RDTs could be explained by P. falciparum histidine rich protein 2 (PfHRP2) antigen persistence after recent malaria treatment. CONCLUSION: Malaria surveillance depending solely on RDTs needs well-integrated quality control procedures to assess the extent and impact of reduced sensitivity and specificity of RDTs on malaria control programmes.


Subject(s)
Antigens, Protozoan/analysis , Coinfection/diagnosis , Diagnostic Tests, Routine/statistics & numerical data , Malaria/diagnosis , Population Surveillance , Protozoan Proteins/analysis , Coinfection/epidemiology , Equatorial Guinea/epidemiology , False Positive Reactions , Incidence , Malaria/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Nucleic Acids/analysis , Plasmodium falciparum/isolation & purification , Plasmodium malariae/isolation & purification , Plasmodium ovale/isolation & purification , Retrospective Studies
8.
PLOS Digit Health ; 1(5): e0000025, 2022 May.
Article in English | MEDLINE | ID: mdl-36812503

ABSTRACT

Public health interventions require evidence-based decision-making to maximize impact. Spatial decision support systems (SDSS) are designed to collect, store, process and analyze data to generate knowledge and inform decisions. This paper discusses how the use of a SDSS, the Campaign Information Management System (CIMS), to support malaria control operations on Bioko Island has impacted key process indicators of indoor residual spraying (IRS): coverage, operational efficiency and productivity. We used data from the last five annual IRS rounds (2017 to 2021) to estimate these indicators. IRS coverage was calculated as the percentage of houses sprayed per unit area, represented by 100x100 m map-sectors. Optimal coverage was defined as between 80% and 85%, and under and overspraying as coverage below 80% and above 85%, respectively. Operational efficiency was defined as the fraction of map-sectors that achieved optimal coverage. Daily productivity was expressed as the number of houses sprayed per sprayer per day (h/s/d). These indicators were compared across the five rounds. Overall IRS coverage (i.e. percent of total houses sprayed against the overall denominator by round) was highest in 2017 (80.2%), yet this round showed the largest proportion of oversprayed map-sectors (36.0%). Conversely, despite producing a lower overall coverage (77.5%), the 2021 round showed the highest operational efficiency (37.7%) and the lowest proportion of oversprayed map-sectors (18.7%). In 2021, higher operational efficiency was also accompanied by marginally higher productivity. Productivity ranged from 3.3 h/s/d in 2020 to 3.9 h/s/d in 2021 (median 3.6 h/s/d). Our findings showed that the novel approach to data collection and processing proposed by the CIMS has significantly improved the operational efficiency of IRS on Bioko. High spatial granularity during planning and deployment together with closer follow-up of field teams using real-time data supported more homogeneous delivery of optimal coverage while sustaining high productivity.

9.
Front Public Health ; 9: 818401, 2021.
Article in English | MEDLINE | ID: mdl-35059385

ABSTRACT

COVID-19 disease caused by SARS-CoV-2 represents an ongoing global public health emergency. Rapid identification of emergence, evolution, and spread of SARS-CoV-2 variants of concern (VOC) would enable timely and tailored responses by public health decision-making bodies. Yet, global disparities in current SARS-CoV-2 genomic surveillance activities reveal serious geographical gaps. Here, we discuss the experiences and lessons learned from the SARS-CoV-2 monitoring and surveillance program at the Public Health Laboratory on Bioko Island, Equatorial Guinea that was implemented as part of the national COVID-19 response and monitoring activities. We report how three distinct SARS-CoV-2 variants have dominated the epidemiological situation in Equatorial Guinea since March 2020. In addition, a case of co-infection of two SARS-CoV-2 VOC, Beta and Delta, in a clinically asymptomatic and fully COVID-19 vaccinated man living in Equatorial Guinea is presented. To our knowledge, this is the first report of a person co-infected with Beta and Delta VOC globally. Rapid identification of co-infections is relevant since these might provide an opportunity for genetic recombination resulting in emergence of novel SARS-CoV-2 lineages with enhanced transmission or immune evasion potential.


Subject(s)
COVID-19 , Coinfection , Coinfection/epidemiology , Equatorial Guinea , Genomics , Humans , Male , SARS-CoV-2
11.
Malar J ; 19(1): 277, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32746919

ABSTRACT

At the beginning of 2019, a sudden surge of malaria cases was observed in the district of Riaba, Bioko Island. Between January and April, confirmed malaria cases increased 3.8-fold compared to the same period in 2018. Concurrently, anopheline human biting rate (HBR) increased 2.1-fold. During the outbreak, 82.2% of the district population was tested for malaria with a rapid diagnostic test; 37.2% of those tested had a detectable infection and were treated according to national guidelines. Vector control interventions, including indoor residual spraying and larval source management were scaled-up. After the interventions, the number of confirmed cases decreased by 70% and the overall parasite prevalence in the communities by 43.8%. Observed prevalence in a follow up malaria indicator survey, however, was significantly higher than elsewhere on the island, and higher than in previous years. There was no significant reduction in HBR, which remained high for the rest of the year. The surge was attributed to various factors, chiefly increased rainfall and a large number of anthropogenic anopheline breeding sites created by construction works. This case study highlights the need for sustained vector control interventions and multi-sector participation, particularly in malaria control and elimination settings with persistently high local malaria receptivity.


Subject(s)
Disease Outbreaks , Malaria, Falciparum/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Equatorial Guinea/epidemiology , Female , Humans , Infant , Infant, Newborn , Malaria, Falciparum/prevention & control , Male , Middle Aged , Plasmodium falciparum/physiology , Prevalence , Young Adult
12.
Sci Rep ; 10(1): 12305, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703999

ABSTRACT

The use of malaria rapid diagnostic tests (RDTs) as a source for nucleic acids that can be analyzed via nucleic acid amplification techniques has several advantages, including minimal amounts of blood, sample collection, simplified storage and shipping conditions at room temperature. We have systematically developed and extensively evaluated a procedure to extract total nucleic acids from used malaria RDTs. The co-extraction of DNA and RNA molecules from small volumes of dried blood retained on the RDTs allows detection and quantification of P. falciparum parasites from asymptomatic patients with parasite densities as low as 1 Pf/µL blood using reverse transcription quantitative PCR. Based on the extraction protocol we have developed the ENAR (Extraction of Nucleic Acids from RDTs) approach; a complete workflow for large-scale molecular malaria surveillance. Using RDTs collected during a malaria indicator survey we demonstrated that ENAR provides a powerful tool to analyze nucleic acids from thousands of RDTs in a standardized and high-throughput manner. We found several, known and new, non-synonymous single nucleotide polymorphisms in the propeller region of the kelch 13 gene among isolates circulating on Bioko Island, Equatorial Guinea.


Subject(s)
Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Molecular Diagnostic Techniques/methods , Nucleic Acids/isolation & purification , Adult , Animals , Blood Specimen Collection , DNA, Protozoan/blood , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Equatorial Guinea/epidemiology , Female , Humans , Islands , Malaria, Falciparum/parasitology , Male , Parasites/genetics , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide/genetics , Protozoan Proteins/genetics , Surveys and Questionnaires , Young Adult
13.
Malar J ; 19(1): 35, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31964374

ABSTRACT

BACKGROUND: Quality control of indoor residual spraying (IRS) is necessary to ensure that spray operators (SOs) deposit the correct concentration of insecticide on sprayed structures, while also confirming that spray records are not being falsified. METHODS: Using high-performance liquid chromatography (HPLC), this study conducted quality control of the organophosphate insecticide pirimiphos-methyl (Actellic 300CS), during the 2018 IRS round on Bioko Island, Equatorial Guinea. Approximately 60 SOs sprayed a total of 67,721 structures in 16,653 houses during the round. Houses that were reportedly sprayed were randomly selected for quality control testing. The SOs were monitored twice in 2018, an initial screening in March followed by sharing of results with the IRS management team and identification of SOs to be re-trained, and a second screening in June to monitor the effectiveness of training. Insecticide samples were adhesive-lifted from wooden and cement structures and analysed using HPLC. RESULTS: The study suggests that with adequate quality control measures and refresher training, suboptimal spraying was curtailed, with a significant increased concentration delivered to the bedroom (difference = 0.36, P < 0.001) and wooden surfaces (difference 0.41, P = 0.001). Additionally, an increase in effective coverage by SOs was observed, improving from 80.7% in March to 94.7% in June after re-training (McNemar's test; P = 0.03). CONCLUSIONS: The ability to randomly select, locate, and test houses reportedly sprayed within a week via HPLC has led to improvements in the performance of SOs on Bioko Island, enabling the project to better evaluate its own performance.


Subject(s)
Insecticides/administration & dosage , Malaria/prevention & control , Mosquito Control/standards , Organothiophosphorus Compounds/administration & dosage , Aerosols , Animals , Chromatography, High Pressure Liquid/economics , Equatorial Guinea , Housing , Humans , Islands , Mosquito Control/methods , Organophosphates/analysis , Quality Control , Seasons , Time Factors
14.
Malar J ; 18(1): 283, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31438979

ABSTRACT

BACKGROUND: Housing mapping and household enumeration are essential for the planning, implementation, targeting, and monitoring of malaria control interventions. In many malaria endemic countries, control efforts are hindered by incomplete or non-existent housing cartography and household enumeration. This paper describes the development of a comprehensive mapping and enumeration system to support the Bioko Island Malaria Control Project (BIMCP). RESULTS: A highly detailed database was developed to include every housing unit on Bioko Island and uniquely enumerate the associated households residing in these houses. First, the island was divided into a virtual, geo-dereferenced grid of 1 × 1 km sequentially numbered map-areas, each of which was in turn subdivided into one hundred, 100 × 100 m sequentially numbered map-sectors. Second, high-resolution satellite imagery was used to sequentially and uniquely identify all housing units within each map-sector. Third, where satellite imagery was not available, global positioning systems (GPS) were used as the basis for uniquely identifying and mapping housing units in a sequential manner. A total of 97,048 housing units were mapped by 2018, 56% of which were concentrated in just 5.2% of Bioko Island's total mapped area. Of these housing units, 70.7% were occupied, thus representing uniquely identified households. CONCLUSIONS: The housing unit mapping and household enumeration system developed for Bioko Island enabled the BIMCP to more effectively plan, implement, target, and monitor malaria control interventions. Since 2014, the BIMCP has used the unique household identifiers to monitor all household-level interventions, including indoor residual spraying, long-lasting insecticide-treated nets distribution, and annual malaria indicator surveys. The coding system used to create the unique housing unit and household identifiers is highly intuitive and allows quick location of any house within the grid without a GPS. Its flexibility has permitted the BIMCP to easily take into account the rapid and substantial changes in housing infrastructure. Importantly, by utilizing this coding system, an unprecedented quantity and diversity of detailed, geo-referenced demographic and health data have been assembled that have proved highly relevant for informing decision-making both for malaria control and potentially for the wider public health agenda on Bioko Island.


Subject(s)
Anopheles , Communicable Disease Control/methods , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors , Animals , Equatorial Guinea , Family Characteristics , Geographic Mapping , Housing
15.
Nat Commun ; 10(1): 2332, 2019 05 27.
Article in English | MEDLINE | ID: mdl-31133635

ABSTRACT

Malaria burden on Bioko Island has decreased significantly over the past 15 years. The impact of interventions on malaria prevalence, however, has recently stalled. Here, we use data from island-wide, annual malaria indicator surveys to investigate human movement patterns and their relationship to Plasmodium falciparum prevalence. Using geostatistical and mathematical modelling, we find that off-island travel is more prevalent in and around the capital, Malabo. The odds of malaria infection among off-island travelers are significantly higher than the rest of the population. We estimate that malaria importation rates are high enough to explain malaria prevalence in much of Malabo and its surroundings, and that local transmission is highest along the West Coast of the island. Despite uncertainty, these estimates of residual transmission and importation serve as a basis for evaluating progress towards elimination and for efficiently allocating resources as Bioko makes the transition from control to elimination.


Subject(s)
Communicable Diseases, Imported/epidemiology , Malaria, Falciparum/epidemiology , Travel-Related Illness , Travel/statistics & numerical data , Communicable Diseases, Imported/parasitology , Communicable Diseases, Imported/prevention & control , Equatorial Guinea/epidemiology , Humans , Islands/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/isolation & purification , Prevalence , Risk Factors , Travel/trends
16.
Acta Trop ; 196: 42-47, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31077641

ABSTRACT

Over the past decade, insecticide resistance to malaria vectors has been identified in 71 malaria endemic countries. This has posed a major global health challenge in the fight against malaria, with declining rates of indoor residual spraying coverage attributed to pyrethroid-resistance. As part of its vector control monitoring strategies, the Bioko Island Malaria Control Project (BIMCP) in Equatorial Guinea conducted routine insecticide resistance bioassays using the WHO's standard susceptibility tests from 2013 to 2018. During the same period, the frequency of the target-site knockdown resistance allele (kdr) in the local vector population was also determined via PCR for detection of the L1014 F mutation. Biochemical analysis for metabolic resistance was also conducted in 2015. From 2016-2017, Fludora™ fusion, a formulated combination of clothianidin (a neonicotinoid) and deltamethrin (a pyrethroid) was evaluated for 9 months on Bioko Island, using the WHO's standard test procedure for determining residual effectiveness of insecticides on sprayed surfaces. In 2016, the mortality rate of the vectors on 0.05% deltamethrin was as low as 38%. The frequency of the West African form of knockdown resistance allele, L1014 F, in the vector population was as high as 80%, and metabolic resistance analysis indicated high upregulated cytochrome P450 s. However, the residual effectiveness of Fludora™ fusion recorded mortalities above 80% after 72 h of exposure for 8 months. Although both target-site knockdown resistance and metabolic resistance to pyrethroids were implicated in the local malaria vector population, Fludora™ fusion was effective under field conditions in controlling the resistant vectors for a period of 8 months on wooden surfaces on Bioko Island and represents a valuable addition to IRS programs, especially in regions with high levels of pyrethroid resistance.


Subject(s)
Anopheles/drug effects , Guanidines/pharmacology , Mosquito Control/methods , Mosquito Vectors/drug effects , Neonicotinoids/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Thiazoles/pharmacology , Animals , Equatorial Guinea/epidemiology , Guanidines/administration & dosage , Guanidines/chemistry , Humans , Insecticide Resistance/genetics , Insecticides/administration & dosage , Insecticides/chemistry , Insecticides/pharmacology , Islands , Malaria/epidemiology , Malaria/prevention & control , Neonicotinoids/administration & dosage , Neonicotinoids/chemistry , Nitriles/administration & dosage , Nitriles/chemistry , Pyrethrins/administration & dosage , Pyrethrins/chemistry , Thiazoles/administration & dosage , Thiazoles/chemistry
17.
J Med Entomol ; 56(4): 1071-1077, 2019 06 27.
Article in English | MEDLINE | ID: mdl-30882148

ABSTRACT

Sustaining high levels of indoor residual spraying (IRS) coverage (≥85%) for community protection against malaria remains a challenge for IRS campaigns. We examined biting rates and insecticide resistance in Culex species and Anopheles gambiae s.l., and their potential effect on community adherence to IRS. The average IRS coverage in urban Malabo between 2015 and 2017 remained at 80%. Culex biting rate increased 6.0-fold (P < 0.001) between 2014 and 2017, reaching 8.08 bites per person per night, whereas that of An. gambiae s.l. remained steady at around 0.68. Although An. gambiae s.l. was susceptible to carbamates and organophosphates insecticides, Culex spp. were phenotypically resistant to all four main classes of WHO-recommended IRS insecticides. Similarly, the residual activity of the organophosphate insecticide used since 2017, ACTELLIC 300CS, was 8 mo for An. gambiae s.l., but was almost absent against Culex for 2 mo post-spray. A survey conducted in 2018 within urban Malabo indicated that 77.0% of respondents related IRS as means of protection against mosquito bites, but only 3.2% knew that only Anopheles mosquitoes transmit malaria. Therefore, the increasing biting rates of culicines in urban Malabo, and their resistance to all IRS insecticides, is raising concern that a growing number of people may refuse to participate in IRS as result of its perceived failure in controlling mosquitoes. Although this is not yet the case on Bioko Island, communication strategies need refining to sensitize communities about the effectiveness of IRS in controlling malaria vectors in the midst of insecticide resistance in nonmalaria vector mosquitoes.


Subject(s)
Culex , Insecticide Resistance , Mosquito Control , Animals , Cities , Equatorial Guinea , Feeding Behavior , Malaria/prevention & control , Malaria/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...